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ABSTRACT

A methqd is preéentéd for computing iﬁitial vectors to be used
in conjunction with a nqmérical optimization proéedure fdr minimizing
the prébabil%t& of_misclassification;. The methda is similar to that
préseﬁted in [G:]l._ Pfeliminary ﬁuﬁerical results of boi:l;_procedures'alje

presented.



OBTAINING INITIAL VECTORS FOR MINIMIZING

THE PROBABILITY.OF MISCLASSIFICATION
L. F. Guseman, Jr. and Bruce P, Marion

I. Introduction

Consider a set of m distinct populations H s I H with

2’--

positive a priorl probabilities Qyy O <0 and n—dimensional multivariate

2,0.

normal conditional den51ty functions defined for x = (x .,xn) e R® by

1.’11

-nf2 -1/2

p G0 = (am Tz [T enpl- 3 Gru) I Geudl, 1= 1, 2,0,

The parameters By and E are assumed known with E- positive definite and :
symmetric. 1f B is'a nonzero 1 X n vector then the populations H have
transformed univariate normal conditional density functions defined for
vy = Bx E-Rl by
‘ o =1/2,.. T-1/2 'ty'B“i)z o _
p.(¥,BY = (2m) " T(BIL,B) exp |- ———— | , i=1, 2,.,.,m.
i i T . P
' ; 2BL B . iR
i
Employing a Bayes optimal (maximum likelihood) classification procedure,
the probability of ﬁisélassifying'a transformed cbservation y = Bx ¢ Rl as a
function of B is given, [1], [3], b

g(B)'-l--f _max aipi(y.B)dy .
K Rl 1<1<m

The resulting optimization problem can then be stated as follows

(see [3]):



Determine 2 1 x n wvector B of norm one such that

g(B) = min g(C).
{lc]]=1

A solution B to the above minimizétion problem cannot, in general, be
obtained in clésed fﬁrm, and'the use of some numerical opt;mi;atioﬁ
procedure is necessary. jAny such optimization élgofithm reqﬁireslan initial
vector Bo,.;InASéction 2 Qe-pféseqt a procedure fof coméut;ng.an initia}
vector, The pfocedute ié similar.to the procedure ﬁresented_in [6}. Both
procédures_produce a Bo bf solving a‘felated fiﬁéd point problem Which

results when one assumes that.

The fixed ﬁoint problem is solved iteratively and also requires an initial
guess C . Preliminary numerical results for various choices of I and Co J

are presented for both procedures,



2. A Method For Determining Initial Vectors

Let B be a nonzero 1 x n vector, and for i # j, let gij(ﬁ) denote

the pairwise probability of misclassification for Hi and Hj; that is,

gij(B) =j; min {-uipi(y,B), o
R

p. (¥ B } dy .
j i ( ] ) ay
Then, it is Well-known [2 ] that'

R
g(B)

FA

oyl (B)
121 jefe1 L

Tl EEXCE
3y win{a,p, (v,B),0.p. (y,B) My
i=1 j=i+l J1 SRR

"

mil ﬁ‘ 7 12
f Aa,a (v,B)p,(y, B0} "7 a
123 4=in1 "él 1%y Py (v )pj(y ) y

1A

m1l m ' 1!é
RO f {p; v, BIP, (5, B}"7 dy.
=1 g=iv1 13 J1 3

1f i # j, and we let

o 1/2
fij,(B).— -{;{Pi(Y:B)Pj(Y,B)} dy ,

 then g(B) < £(B) where f(B) is given by

- umii % e .
£(B) = ‘ vo.a, f,
| i=1 4=itz *d %

j (B) .



For the purpbseuof obtaining a starting vector Bo‘we attempt to find é :
minimum of f subject to the condition that Zi'= r,1i=1,2,...,m, In
this case, the expression for fij(B)’.i # 3, is given, [51, by

1 AT e Ti-1
£,5(®) = 5 Gu-8u) T (BB (Bu-Bi).

The Gateaux differential, 6f(B;C), of f at nonzerc B in the direction of

alxn vector C is given by

»

L .mil ﬁ-- .

SE(B;C) = ‘ voa, 8f,,(BiC) ,.

R 1= geiep  + 3 1

whére _ .
Cu, =1, VB (-1, ept o }‘
1 1774 17 ‘ 2

£, ,(B;C) = ¥ - - - (Buy-u))
-4 4 { BEB” (z8hy? . '? jf

If B is a nonzero 1 x n vector which minimizes £, then B satisfies the

vector equation

SE(B 5 Cp) 0
q”a_-'f— é l-l' = -*
BB - ) . -
Gf(B H Cn)-' 0
" where Cj , 1<3j<n, 1s the 1 x n vector with a one in the jth_slot‘and .
Zeros elSeﬁheré.  Letting'6ijE= By uj , the resulting expressioqbfori‘

f . .
%E is given, [5], by

w1 am M, - ey

151 jef#r L3 A gpph?2 M

m-l m 81 T 2
BZB



Since f(tB) = f(B) for t # 0, and since f is a continuous function of B,
the problem reduces to minimizing f over the set of 1 x n vectors of norm

one,

Theorem 1. Let Bo Be a'l x n vector of norm one which minimizes £. Then

B0 is a fixed pointrof

T l
H(B) = L(B) L
RSl
where
. mil ?
L(B) = Vo u : (BG )8 .
| 1=1 j=il . 137 1]
. C ” Y
Procf: If B minimizes f, then — = 0 ,
St T T A S .BBO
Then from (*)
m-1 m B & : m-1 m : ZBTB

Y Y Vaa, SR R S T Y o Yo, - (B

=1 3=+ 13 pael M ogmrgein T3 (s 2D’ 613 ij
Letting
-l m
L(§°)' 121 i= §+1 /“TZ; EOSTIATT IR
" we have.

T T
BOEBo F(Bo) = ZBOB0 L(BO) .



. T
Since ZB:BO has rank one-and EBE is the eigenvector of EBOBO _
. corresponding to the eigenvalue BOEBg » 1t follows that there exists some
A such that
' - T
L.(Bo) = AEBO .

Since B L(B ) >0, it follows that A > 0, Then

- T.-1
B, =T LB I,

>l

and since B0 has norm one, it follows that X = II L(Bo)T Zﬂl-ll .
Hence, if Ba minimizes £, then

T -1
LEB)YZ T

B, = e = u(z) .M

© ey | °

Suppose that Adisannzxn matrix satisfying A Z A: = 1. TFor a
1 x n vector C; let
-1 m

A (CAS, ,)AS
1=1 j=:2[+l. "% | 17413

: LA(C)

and let
' T
L, (C)
-HA(C) = ___A;___T_
- [, @]

-

Theorem 2. Let A be an n x n-matrix'such that A T AT =1
e A
(a) 1If C is a fixed point of H,, then B = ———

is a fixed pbint of H,
[lcal] S .



||—1BA-1 is a

(b) 1f Bris_a_fixed‘point.of H, then C =‘I[BA-1
fixed point.of HA' |
Proof:

(a) If C=H,(C) = Ly (© , we have ||1,(©)7|]ca = L,(©)"a ,

' T _ _ : ‘ .
IEROMI
: T T - -1 T —

and so ||LA(C) I | call = ||LA(C) Al]. We also note that £ = = A"A and

Leca)T = (A_lLA(C))T. Then
H(B) - B ( CA )
| [leal]

L(Tﬁ_lr) T

_II'L(;ITﬁiIT_) TS

Lca)T 5t

| e T 57 ||

(A_lLA(C))T ol
e en® 5]

L ©" @H "

11, ©F @whH™ams ||

LA(chA

T .
IRNGE NI



T
L, (©74

o T
11, @7 |1 Ilcall
ca
Iea
(b) If H(B) =B, then |] L®T T a™ |] =[] LT =) |Ima™Y] .
-1
Letting C = —E-—l—-—-— , we have
[ Ba™ (]
T
L, (C)
‘B, (C) = A T
o @ ]

L ( BA_l 7 )T
A -1 .
Mo
o BA_l \ T
Hr(—=—] 1|
| Ba™"|| /7

) -1.T
LA(BA }

|| L, a7 |

(A L))"
Il ¢ L)t ||

Lyt aTan~t

] L@t aTas ]

e E I

et shatt )

| L(e)T 51 Al
= T o1 -1,
[T " 2™ || | |sa™]
=1
=22 ¢ | K

-1
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In light of Theorem 2, the problem of minimizing f'reduces_to

finding a fixed point of HA, Thus we have -the following procedure:

a. Given U Hys and Ei,ﬁl-i 1 < m, compute ¥ from El,...,Em

~ (three different ways of computing I are discussed in

~Section 3),~
b. Determine A such that A & AT = 1.

" e. Using an initial guess C, for the fixed point of H,, compute -

successive vectors ¢, using the mean iteration formula

- (see [4]) -
o n . 1
Chs1 = o1 Cn + o+l HA(Cn) *
d. If the sequence‘{cn} converges to C, ‘then C = H,(C), and

CA

=-TT—~IT is the imitial vector for the numerical optimization
CA

O

" procedure used to minimize

g(B) = 1 —f max o, (y,B)dy ,
, Rl l<i<m & :

where .the parameters for p; ‘are given by n, andJZi, lﬁifm Vo

" The procedure_inx[ﬁ] is the same as the above procedure with the

nd H replaéed with the functions F, G, F,, and G,,

functionsnL, H’3LA’ a A A

respectively, ﬁhere

m~1 .
F(B) = o; Py (aj;B) Gy
=]

3 i3

-u, ),
1

j+1

and the indices for the ui's are chosen (for a given B) such that
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Infa, /o ) B(u Hu, )
) i, ij+1 . ij+l 1j
3B -w ) 2 ’
73 ’

# -'F(B)TE"; ‘
T T.~1
He 27|
and FA’ GA are the resulting expressions of F and G above when‘p; = Aui
and A 2 AT = I,
At present there are no theoretical results which insure that the
sequence {Cn} above always converges. Investigations into this and related

problems are underway.
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3, Preliminary Numerical Results

For all of the'results presentedrherein we used as signatures fhé'
12-dimensional mean vectors My and 12x12 covariance matrices Zi for
clasées 1-9 of Flight Line.210.

AéApossible candidates for tﬁe common covariance matrix I, we

investigated the following:

(1 ==

ol
~
-1

9 etz

(2) &t =
S RIEA]
O, i
s PR
| 9" o tr(z,) | |
(3) Z = B Zi-" tr(A) denotes the trace of A,
i=1 . ; : '
-1 atr(Zy)

i=1
As initial guesses, C,» for the fixed points we used both

cC =

g = = b » e [l 11 = g

and

Cotn = Mg = Hp s where ||u-u || = Ti? | Ty |
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The results in Tables 1 and 2 below assumed equal a priori probabilities
(ui = 1/9). An unequal a priori.probability case is presented in Table 3.

The following notation is used in the tables:

Bo—-— The initial vector determined by the particular
st?rting procedure; that is, Bo is the computed fixed
point.of either G or_H.

Bmin -— The veétdf whichﬁminimizes g as determined by the
numerical optimizaﬁion procedure when uéing B0 as an
initigl vector. |

g(B) -- The value of the probability of misclassification at

-B_fbr_the general problem (distinct Ei) under consideration.

As can be seen from Tablés 1 and 2 below, the procedure developed in
" Section 2 produced the best results when @I was computed using formula (2)
and Co = Cmax' The best results for the procedure developedlin [6] were

obtained when I was computed using formula (3) and Co = Coax
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_ ‘B, satisfying Bo.satiéfying
Formula used Bo =-H(Bo) Bo = G(Bo)'
to compute % . "

@) 37,84 29.20 | 33.90 | 22.51
(2) 38.77 16.43 36.16 29.37
) 36,60 29,20 32,79 16,43
Table 1. C =C
o) max
B satisfying Borsatisffing
Formula used - Bo = H(Bo) Bo = G(Bo)
to compute b - Y _
. g(Bo) g(Bmin) - g(B)) g(Bmin)
(1) 37.66 29,20 29,82 22,51
(2) 39.49 22,51 31.32 29,20
(3) 36.54 29.20 31,26 29,20
Tab¥e 2. Co=cmin'



B  satisfying

BO satigfying

0
Formula used Bo = H(Bo) BO = G(BO)
to compute X
g(BP) g(BnEin) g(B) | & ;)
(2) 23,04 12,40 -— -
(3) — - 26.59 | 12.40
al = -00_2 - .05-, a3 = ag = .20, (1,4 = .10
Gg = Og = .15, Qg = .02, 0, = .08

Table 3. C
. O
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